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Quantum dynamics of a particle coupled to a fermionic environment is con- 
sidered, with particular emphasis on the formulation of macroscopic quantum 
phenomena. The framework is based on a path integral formalism for the real- 
time density matrix. After integrating out of the fermion variables of the 
environment, we embed the whole environmental effects on the particle into the 
so-called influence functional in analogy to Feynman and Vernon's initial work. 
We then show that to the second order of the coupling constant, the exponent 
of the influence functional is in exact agreement with that due to a linear dis- 
sipative environment (boson bath). Having obtained this, we turn to a specific 
model in which the influence functional can be exactly evaluated in a long-time 
limit (long compared to the inverse of the cutoff frequency of the environmental 
spectrum). In this circumstance, we mainly address our attention to the quan- 
tum mechanical representation of the system-plus-environment from the known 
classical properties of the particle. It is shown that, in particular, the equivalence 
between the fermion bath and the boson bath is generally correct for a single- 
channel coupling provided we make a simple mapping between the nonlinear 
interaction functions of the baths. Finally, generalizations of the model to more 
complicated situations are discussed and significant applications and connec- 
tions to certain practically interesting problems are mentioned. 

KEY W O R D S :  Path integral; influence functional; fermion bath; real-time 
density matrix; Grassmann algebra; quantum Langevin equation. 

1. I N T R O D U C T I O N  

It has been an interesting question whether a macroscopic quantity can 
exhibit quantum properties that can be measured from experiments. By 
macroscopic, in fact, different people have different interpretations. What is 
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more important is rather that a macroscopic quantity usually consists of a 
large degree of freedom at certain microscopic level(s). Thus, one impor- 
tant point 2 to look into is whether this large amount of freedom can 
destroy the effects of the superposition principle, which is assumed to be a 
universal rule for our world. In a narrow sense, the problem can be cast 
into the question how the environment-- the freedom at a certain 
microscopic level(s)--affects the quantum dynamics or the quantum 
properties of their macroscopically collective mode. For  instance, one can 
ask whether there are possibly macroscopic quantum tunneling (MQT) 
and macroscopic quantum coherence (MQC). Therefore, the initial 
question is essentially a problem of the dynamics of many-particle quantum 
mechanics. Also, because one is interested in the dynamics of the 
macroscopically collective mode rather than certain thermal or average 
properties of the macroscopic system, the major source of the difficulties for 
the problem lies in the fact that there are too many uncertainties for the 
environment, possessing a large degree of microscopic freedom. Besides, the 
information concerning the interactions between the quantity of interest 
and its environment is quite limited in most practical problems. 

It is well known that coupling between a system and its environment 
usually results in an irreversible energy dissipation. In classical theory, this 
dissipation is commonly represented by introducing certain dissipation 
terms into the equation(s) of motion, most frequently a dissipation term 
linear in velocity. However, if this is the only information one knows for 
the classical correspondence, there is no unique scheme to formulate the 
quantum description for the whole system (system-plus-environment). 
Thus, a fundamental problem is how, in a way as natural as possible, to 
truncate the basically unknown environment and its interactions with the 
bare system into a proper form upon which quantum mechanical 
calculations can be performed. 

Fortunately, there are still some ways to deal with the above situation. 
It was well conjectured that if the motion of the system only weakly per- 
turbs the environment, in other words, the coupling between the system 
and each of the microscopic freedoms of the environment is so small that a 
second-order perturbation is adequate to account for its effects, then the 
environment can be effectively cast into a set of harmonic oscillators while 
one considers its effects on the dynamics of the system. (1'2) Note that this is 
by no means to say that the whole effect due to the environment is 
necessarily small. This offers a natural, phenomenological-like scheme to 

2 The other point, which cannot be answered within the framework of quantum theory, is 
whether the quantum mechanical description of a macroscopic quantity is correct; 
investigations concerning this point can be found elsewhere. However, this is beyond the 
scope of this work. 
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solve this problem of many-particle quantum mechanics, as is described 
below. (2~ One first models the complete system (system-plus-environment) 
by truncating the environment into a harmonic oscillator bath coupled to 
the system. Then one determines the coupling terms via a correspondence 
to the known classical properties of the system such as equation(s) of 
motion, under the limit of h ~ 0. After this, various quantum mechanical 
calculations are readily carried out. 

Even a simple quantum system can have profound changes when it is 
coupled to a dissipative environment. Historically, Feynman and Vernon 
considered a general coordinate-like quantum system coupled to a linear 
dissipative environment represented by a set of harmonic oscillators. (1) 
Using their path integral approach to quantum mechanics, they were able 
to put the whole environmental effect on the system into the famous Feyn- 
man influence functional. Later, many studies in the topics of quantum 
Brownian motion (3) and quantum Langevin equation (4/ were made based 
on this approach. Recently, this functional integral approach has been 
extended into imaginary time to calculate the rate of M Q T  out of a 
metastable potential. 3 Also, the Feynman method has been used for a 
direct calculation of the M Q C  properties of a dissipative two-state system, 
with fruitful results (cf. Ref. 6, where many other references on this subject 
can be found). 

However, from the statistical physics point of view, there are profound 
differences between the Fermi statistics and Bose statistics. Although in the 
above-described weak coupling limit any environment can be 
approximated by a harmonic oscillator bath of bosonic nature, one may 
still ask how it will be if the environment considered is actually fermionic 
and the coupling is not necessarily weak. Part  of the answer already exists 
in the literature. Hamann  (7) and later Yu and Anderson, (8) in an 
imaginary-time functional approach, considered the partition function of 
an impurity-like particle surrounded by an electron gas. In their work, a 
saturation of the effective coupling between the particle and the electrons 
was found, indicating the significance of the environmental nonlinearity. As 
regards real-time dynamics, Chang and Chakravar ty  (9~ did an explicit 
calculation in a two-state system coupled to either a Bose or a Fermi gas. 
Their results showed that the coupling to a fermion bath is equivalent to 
the coupling to a boson bath for the particular system provided one makes 
a suitable correspondence for the coupling constants. Recent work by 

3 For these, a quite complete calculation at zero temperature was given in Ref. 2 and a 
microscopic confirmation on the phenomenological model was given in Ref. 5. Finite-tem- 
perature extensions were also worked out by several authorsJ 22~ In addition, some numerical 
evaluations are available. (23~ Finally, a recent review by Hanggi ~24) covers the generally 
topics of interest in this area. 
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Hedeg~rd and Caldeira (1~ gave, among other things, a generalization of 
Chang and Chakravarty's result to a multistate, though still discretized, 
system. They also gave a detailed introduction to the current situation and 
the significance of the dissipative dynamics in a fermionic environment. 

Nevertheless, of great importance in practice, a more generalized 
question should be proposed concerning a general system coupled to a fer- 
mionic environment: Is there any systematic or unified way to predict 
possible quantum properties simply from the classical correspondences, as 
people have done for the boson bath coupling? Moreover, it is of particular 
interest whether the general conjecture mentioned above does stand for the 
fermion bath coupling, more precisely, whether the fermion bath can be 
effectively cast into the boson bath via some suitable correspondences. This 
is, in fact, precisely the problem we are looking into in this work. 

We basically employ an extended path integral approach (thus form- 
ing a continuous state system) to the problem by virtue of Grassmann 
algebra developed particularly for a fermion field theory. (H) On arriving at 
this point, we first adopt a modified Keldysh technique (12) to describe the 
real-time density matrix of the particle in a complex-time contour known 
as the Baym-Kadanoff contour. (~3) Then we demonstrate explicitly the 
transformation of the expression into a path integral representation. This 
makes our approach fall into that of Feynman and Vernon, where a formal 
path integral defined in Grassmann algebra represents the effects of the fer- 
mionic environment. 

This paper is arranged as follows. In Section 2, we offer a formal path 
integral representation for the real-time density matrix, which serves as a 
fundamental formalism for the rest of our work. In Section 3, we evaluate 
the function J(x, y, t; x', y', 0) [see below, Eq. (6)] explicitly to the second 
order of the coupling constant. The result shows an equivalence between 
the boson and fermion baths. In particular, when coupling coefficients are 
taken to be an overall constant, an unambiguous Ohmic spectrum appears. 
In Section 4, this case is further explored. An exact solution in the long- 
time limit (long compared to the inverse of the cutoff frequency of the 
environment) is found by virtue of a method first introduced by Nozi6res 
and De Dominicis (14) in the discussion of the X-ray edge problem in metals 
(a slight extension to a multichannel coupling was made there, too). In 
Section 5, the quantum Langevin equation is derived from that model with 
full nonlinearities involved. We thus obtain a way to predict the quantum 
properties from the corresponding classical equation of motion. It turns out 
that the results for a single channel coupling are equivalent to those of a 
boson bath coupling provided we make a suitable mapping between the 
nonlinear interaction functions in the two baths. Finally, in Section 6, we 
discuss some possible generalizations of the model to more complicated 
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situations, and mention the connections to other interesting circumstances. 
Appendix A is devoted to the detailed derivation of the path integral 
representation in Section 2, while Appendix B is concerned with the full 
derivation and justification of the solution used in Section 4, and Appendix 
C gives the effective Euclidean action for the fermionic environment for the 
convenience of MQT calculations. 

2. PATH INTEGRAL F O R M A L I S M  FOR THE REAL-T IME 
DENSITY M A T R I X  

A large variety of quantum systems are surrounded by fermionic 
environments. Among these, some of the important examples are men- 
tioned in Ref. 9 and 10. Since we are dealing with a fermionic environment, 
it would be more convenient and physically transparent to work directly 
on the fundamental fermionic excitations rather than their bosonic com- 
binations. To maintain as many varieties of applications as possible 
through this work, we begin with the following very generalized 
Hamiltonian4--the system considered is characterized by a particle with 
continuous coordinate, while the environment is presented in the form of 
creation and annihilation operators: 

~2 
[~I=~m~-V(x)-~ ~ Cij(x) b~bj-~ ~ b~isibi-~I~Iint({D~,bi}) (1) 

i , j - -1  i--1 

where the notations are standard: 2 (/~) is the coordinate (momentum) 
operatum) operator of the particle with a mass m moving in an arbitrary 
potential V(x); {/;,*,/~i} is the set of creation and annihilation operators for 
the fermionic heat bath with energy level {ei} and an interaction 
Hamiltonian/~int({D~,/3i}) between the fundamental fermions. To study the 
real-time properties of this kind of general quantum system, the most 
relevant quantity to look into is always the real-time density operator, 
given via the definition 

~( t) =_ e- iH'~(O) e iHt (2) 

o r  

/3(x, y, t)-= <xl e-"q'/3(0)e "q' lY) (2') 

where the left side is still an operator with respect to the environment. One 
has to assign a initial density matrix iS(0) to the complete system (system- 

4 One should notice, however, that we have excluded an important  class, namely, systems 
interacting with their environments via momentum-coupl ing mechanisms are not  considered 
here. See remarks in Section 6. 
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plus-environment). Although arbitrary choices can be made, we shall take 
the most common and most convenient one--the factorized initial density 
matrix 5 as follows: 

t~(0) = [exp(-/?/~e)] ~(0) (3a) 

with 
(x' l  ~ ( 0 ) l y ' ) =  tS(x', y', 0) (3b) 

g2 
He~" 2 /)~'gi/~i-[-[~int({/~ ' /~i}) (3C) 

i=l 

Notice that the right-hand side of Eq. (3b) is no longer an operator, and 
He indicates the environmental Hamiltonian as defined in Eq. (1). Upon 
this assumption, the/5(x, y, t) can be written 

iS(x, y, t )=  f dx' dy' (xl e i~q~ Ix')  e -~O~ (Y'I e+iH' l Y > ~(x', y', 0) (4) 

However, because the behavior of the environment is beyond our scope, we 
are only interested in the reduced density matrix for the particle alone, 
given by tracing out of the environmental variables, 

where 

p(x, y, t )=  Tre ~(x, y, t) 

= f dx' dy' fi(x', y', O) J(x,  y, t; x', y', O) (5) 

J(x, y, t; x', y', O)= Tre[(xl  e - m '  i x ' )  e - ~ "  (Y ' l  e +'"' lY)] 

=Tre[  e-p 'e  (Y'I  e +i~I' l y ) ( x l  e i~q~x')] (6) 

It is now a matter of expressing the right-hand side of Eq. (6) in terms of 
path integral formalism. This is done in Appendix A of this work. We then 
arrive at the formula 

J(x,  y, t; x', y', O) 

i = l  

i = l  i , j ~ l  

(7) 

5 It should be pointed out, however, that there are no special difficulties in making other 
choices in our path integral formalism. 
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where the integral contour 7 is the so-called Baym Kadanoff contour (~3) as 
shown in Fig. l. The following boundary conditions are imposed on the 
path integral in Eq. (7): 

z(O+it)=x', z(O-it)= y', bi(O+it)= -bi(-ifi) 

z ( t  + i t )  = x,  z ( t  - -  i~) = y,  b~i(O + i~) = - b ~ (  - i~ )  

cO(z(t))-O for re(O--it,--ifl) 

It ought to be kept in mind that the path integral over the fermion 
variables {bi t, bi} is defined in Grassmann algebra, which differs from the 
ordinary one by imposing an anticommutation relation between any two 
Grassmann numbers. The integral is, in fact, quite formal and should be 
thought of more like a definition. 

Up to this stage, we have not yet specified any detailed structures for 
the environment. Thus, one can easily realize that the formula (7) is itself of 
broad applicability to very general situations because it offers a unified way 
to treat the problem in both the classical and quantum limits. In the 
classical limit, one can use standard quasiclassical approximations, such as 
the stationary phase approximation (see below). On the other hand, in the 
quantum limit the diagram technique of quantum pertubation theory is 
readily applicable. 6 In addition, one important feature concerned with the 

6 For this, notice that in Appendix A, instead of transforming Eq. (A7) into a path integral 
representation, one can expand the interaction exponents in Eq. (A3) into powers of the 
functional derivatives with respect to the external sources of the fermion bath, while transfor- 
ming the coordinate part into the well-known path integral formula. In this way, one 
recovers the quantum perturbation theory. 

i B .  
2is 

O+i~: t + i s  ii 
= / 

o - i s  t - i s  

- i B  

complex-time plane 

Fig. 1. A schematic representation of the contour 7 (Baym-Kadanoff contour). Note that 
the quantity ~ is infinitesimal. 
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advantages of the path integral technique lies in the fact that in it, unlike 
the ordinary perturbation theory, it is quite easy to formulate new collec- 
tive modes. This allows us to treat some interacting fields fairly 
conventionally. (11~ Suppose that we are dealing with a superconducting 
electron gas; then a pair field ~5'11/ can be introduced to eliminate the 
interactions between electrons. This results in a new representation of the 
environment in which the coupling between the system and the environ- 
ment becomes a sum of quasiparticle scattering and pair creating and 
destroying operators. In another important situation, where the environ- 
ment consists of a normal interacting Fermi liquid, the appropriate new 
modes would be the quasiparticle excitations and the coupling 
Hamiltonian would become quasiparticle scattering-like interactions. This 
point was discussed extensively in Ref. 11, where the reader can find some 
illustrative examples. As a result, even though our original environment is 
very complicated, it is always possible to transform it into a simple one in 
terms of its collective-mode excitation structures. For  these reasons, a study 
of some simple but practically interesting cases will never be meaningless. 7 

In what follows, we shall concentrate on the case in which the particle 
is coupled via a separable scattering-like interaction to a noninteracting 
Fermi gas; more precisely, /~int({b~, /~i})=0 and C~/(2)=C~jF(2)in the 
Hamiltonian (1), with F(2) an arbitrary function of 2 called the interaction 
function of the coupling Hamiltonian [we shall return to the general 
situation for nonseparable Ca(x ) in the final section, where we mention 
important generalizations of our results]. Then 

J(x, y, t; x', y', O) =- ~z(r) [I  ~b~(r) .@bi(r) exp i m~- 2 - V(z) 
i = l  

+ ~ b~(iO,-si) b i -F ( z )  C~b~bj (8) 
i=1 i , j = l  

At this stage, the integral over the fermion variable can be easily carried 
out via an integral formula on an exponential bilinear form in Grassmann 
algebra. (~11 It turns out that 

J( x, y, t; x', y', O ) = y ~z(  r ) exp { i f. dr I 2 m~X - V( z ) ~ - tr log G } (9) 

where G is the matrix notation of the full Green's function given by 

Go.(z, r ') = [(ia~ - s,) 6~j6.~(~, ~') - Co.F(z(~)) 6,(r, ~')] -~ (10) 

v Chang and Chakarvarty ~ give similar arguments  in terms of the well-known Landau 
quasiparticle picture. 
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namely, 

(2 

E 
k = l  

[(ia~--a~)&ik--CikF(z('r))] Gk/(~, T')= &0-&~(~, ~') (10') 

Notice that v, ~'~ 7 and &~(z, v') is the &-function defined along the contour 
7. If we now employ the additional matrix notations 

G O - E(ia~ - ei) &q&~(z, ~')] ', C -= cuF(z(~)) &./(~, :'), 

then Eq. (10) or (10') says 

o r  

I--&,j6~,(r, r') 

G = ( I - G ~  -~ G O (11) 

G = G ~ 1 7 6  (11') 

These are in the form of Dyson's equation. We can use a common trick to 
treat the trace conveniently. Let 

G x =  GO+ gG~ (12) 

tr log G ~ tr log G O + dg t r  GgC (13) 

Then 

The first term in Eq. (13) is independent of C and contributes only a trivial 
factor to the normalization of the path integral; cf. Eqs. (A7), (A9), and 
(Al l )  for the proper renormalization. Equation (9), together with 
Eqs. (12) and (13), forms the framework for the rest of this paper. We now 
turn to detailed analyses of these formulas. 

3. S E C O N D - O R D E R  A P P R O X I M A T I O N  ON M A P P I N G  TO 
BOSONIC  BATH 

As a first approximation to Eq. (12), we keep one more term than just 
G o . We then have 

Gg = G O + gG~ ~ + O(C z) (14) 

tr log G = tr G0C + ~ G~176 + O(C 3) (15) 

In Appendix A, we give a direct evaluation of G ~ which says [Eq. (A8)] 

G~ z')= -i6~[O,(r, ~')- f(ei) ] e x p [ -  i~,(r- r ' ) ]  
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where O~(r, ~') represents the step function along the contour 7 ; f ( t )  is the 
Fermi distribution function. In dealing with the trace, we treat the equal- 
time limit as r ' ~  z +, as usually encountered in the literature (this is most 
easily understood by visualizing that in the original Hamiltonian the 
products of / ; t  and ~; always appear in combinations of/;t/~). Thus, 

~ { d'c F(z('c)) t r l o g G = I d ' c z ( r )  ~ if(e) C i j - ~  &' F(z(z')) 
i = 1  

g2 

x ~ {exp[-i(e~-ej)(z-r')]}[O~(r, r')-f(e~)] 
i , j - -  1 

C o C  ' ) I f  (16) x j iEO~(z - r )  - f ( e j  
) 

where the integral over the loop ~ means integrating from 0 + it to t + ie, 
then from t -  it back to 0 -  ie [integrating from 0 -  it to - i f l  is neglected, 
since F(z(z))- 0 for z e ( 0 - i t ,  - i f l ) ] ,  that is, integrating over the horizon- 
tal part of the contour 7. The function J(x, y, t; x', y', 0) becomes, under 
this approximation, 

J(x, y, t; x', y', O) 

+~ dz &' F(z(v))F(z(z')) 
i,J'= i 

- z(z) ~ f(ei) cii] 
i = l  

{ e x p E - i ( t , -  tj)(z - z')] } 

xLO,r (17) 

As was used in the original work by Feynman and Vernon, (~) a real- 
time dynamics of a particle usually is described via two independent 
functional integrals; one is from time 0 to time t and the other is from time 
t back to time 0. In parallel to this description, we separate the two 
branches: If we denote the coordinate variable z(z) by q1(z-it) in the 
upper branch and by q2(z+ ie) in the lower branch, in which the time 
arguments of q~, q2 are purely real quantities defined in [0, t], then we 
arrive at the form obtained in Ref. 1, 

J(x, y, t; x', y', O)= f ~ql ~q2 F[ql, q2] exp{iS[q~] - iS[q2] } (18) 
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with the action defined as 

S[q]  = dt' mO 2 -  V ( q ) -  F(q(t')) 

and the influence functional given by 

o ] 
Y f(<) c.  (~Sa) 

i = 1  

where 

dl2 {[F(ql ( t l ) )  F(q2(tl))] 

x c~l(t 1 - tz)[F(ql(t2) ) -F(q2( t2) )]  

i[F(ql( t l ) )  - F(q2(tl)) ] a2(t, - t2)[F(ql(t2)) + g(q2(t2)) ] }) + 

(lSb) 

f 
+o~ 

~ 1 ( / )  = do)  J I ( ( D )  COS co l  (19a) 

f+ 
oo 

~2(1) = dco Y2(co)  sin cot (19b) 
co 

and 

J , (co)=~ ~ ICo]2 ( l+e&, ) ( l+e&, )~5 (g i -g j - co  ) (20a) 
i , j= i 

l ~ ,  - -  e ~'' + e &j 
j2(o  ) = 2 ]Cij ] 2 ee~7 ) 6 ( e i -  a~- co) (20b) 

i , j = l  (1 + e/~')( 1+ 

No specifications have yet been made with regard to the coefficients C 0. 
Equations (18)-(20) can be used to study systems in which detailed infor- 
mation about the coefficients could be given via microscopic calculations 
(in fact, the requirement of the separable interaction condition is 
unnecessary for this second-order expansion). As an example, let us look at 
the following simple situation: If near the Fermi surface e = 0  we have 
I Cij[ 2 _ C 2 = const, p(e) _= Po - density of states at the Fermi energy, then 
the J(co) become 

1 
j ,  ( co ) = 2 p2 C2CO coth (flco/2 ) 

1 2 2 
J2(o) = - ~  po C co 

(21a) 

(21b) 
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Substituting Eqs. (21) back into Eqs. (19) with an expenential cutoff e ~lo~i, 
where 6 ~ 0, we find 

cq(t)= C P 0 ~  L~coth~ ( t ) - T + ~ +  O 

2 2 dl-  ~ h ~ ] - , c  p0  Pfcot f ( 0  (19a't 

C 2 2 d (  ~ )--*~zC2pgc~'(t) (19b') = po 

Thus, the influence functional for this simple coupling becomes 

F[ql, q2] =exp ( -  f~ dtl f~ dt2 C2p2 {[F(q~(tl))- F(q2(tl))] 

E J x ~ P ~ coth ~ (tl - tz) [F(q~(tz)) - F(q2(t2))] 

+~ dt' C2p 2 f(ql(f)) F(q2(t')) 

- F(q~(t')) IdF(q2(t'))]} ) (18b') 

Meanwhile, there also exists a large adiabatic renormalization potential 
V,(q) = -[CpoF(q)]2/6 for the bare system. (3) 

These fall into the version of Feynman and Vernon's theory; in par- 
ticular, Eqs. (21) should be compared to Eqs. (3.10) and (3.11) in Ref. 3 
for comparisons between the two kinds of heat baths. The equivalence 
between the two is thus transparent. In particular, the spectrum is of the 
Ohmic type of interest in recent research in macroscopic quantum theory. 

The approach to Eqs. (18)-(21) differs somewhat from that of Ref. 10. 
They only kept terms up to second order of the coupling, then brought 
them back to the exponent without making further justifications. On the 
other hand, we have essentially included a group of higher order terms up 
to infinity since our calculation was performed for the exponent. They also 
took into account part of the interactions between the fermions. But we see 
no special difficulties in making the same consideration, as mentioned 
before. 

Once the correspondence between the fermionic and bosonic heat 
baths is found, all work exploring the detailed properties of the bosonic 
heat bath can also be applied here, including the approach of fixing the 
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relevant parameters from classical correspondences. Thus, we do not intend 
to go further along this line; instead, we turn to the search for possible 
exact solutions for the full Green's function G in Eqs. (10) (12). 

4. E X A C T  S O L U T I O N  IN L O N G - T I M E  L I M I T  

Having obtained the second-order expansion for the exponent 
influence functional, we start to look into the possible exact solution of 
Eq. (11) in the long-time limit (by long time, we mean long compared to 
the inverse of the cutoff frequency of the environmental spectrum; see 
below), and thus give an exact expression for the influence functional in 
that limit. Equation (11'), when written out in its component form, gives 

s 

Gij = G~ r') + ~ ~ G~ r") C~,F(z(r")) G(](r', "c') dr" (22) 
k , l = l  

What we need is the trace-like function 

~2 

G(r, z')= ~ Gi/z, z') C/i (23) 
i , j =  1 

which satisfies, from Eq. (22), 

C(+, r ' )  = 0o(+,  r ' )  - i 
s 

2 
i , j , l  = I 

dr" {exp[ -iei(r - r")] } 

x [0,(r, z " ) - f ( e ; ) ]  F(z(r')) C i l C j i G l j ( r "  , z")} (24) 

Until now, one can do little with the general Dyson-type equations 
(22) (24). To further simplify Eq. (22), we make the following assumptions 
on C 0 in the way of classifying them: 

Cij=C~, for i, je(2~; ~ = 1  ..... n 

Cu=0,  for iEf2~, j~f2~, c~#fl; fi=l,...,n 

where f2~ is a subset of the whole state f2, and f21 + ... + f2, 
Eq. (24) reads 

+. ,+ ' t  i -~ = = as(r,  r ') 

+,,>+ ,, a~(z , F(z(r")) G~(r, z') 

= s Then 

(24 ' )  
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What Eq. (24') indicates is simply this: Suppose that the Fermi gas has n 
channels (multichannel environment), such that the interaction matrix 
coefficients Cii do not connect any two of them; then each of the channels 
contributes to the influence functional in the same way and the total effect 
is just the sum of individual contributions (cf. Section 6 for more practical 
implications). Therefore one only needs to study the case n =  1 (single- 
channel environment). We shall return to the multichannel case after 
finishing the single-channel problem. 

Now what is left is a purely mathematical integral equation to be 
solved. We rewrite Eq. (24') for the single-channel environment in the form 

G~176176 ') (25) 

where, from Eqs. (AS) and (23), 

/2 

G~ ~')=- -iC ~ {exp[-iei(~-~')]}[O,y(~, ~')-.f(ei)] (26) 
i = l  

Let us examine the detailed structure of G~ r'). To capture the long- 
time behavior of this function, we choose, for example, the density of states 
to be p(e)=poe ~t~l for the moment. Then, in the limit 5/fi~l, 
f i - I Im( ' c - ' c ' ) l  >>6, 

~Q 

G~ ~')= - iC ~ {exp[ - iei('c - ~')] } [O~,('c, ~ ' ) -  f(~i)] 
i ~ 1  

~ -Cpo sinh(r~/fl)('c - "c'- i6 sgn~(r, r')) 

where sgn~(~, r') stands for the sign function defined along the contour 7. 
Detailed plots of Eq. (26') can be found in Ref. 9, where one can also find 
some analysis and delicate treatment of the application of the so-called 
long-time approximation first introduced in Ref. 14. Since the long-time 
behavior of G~ r') is quite simple and independent of the cutoff 
procedure, one might try to approximate Eq. (25) via a replacement of 
G~ r') by its long-time form in order to get at least the correst answer for 
the long-time behavior of G(r, ~'). But, because our final goal is to obtain 
the quantity G(r, v+), we have to worry about the contributions from 
integrals in the short-time regime, since G~ r') oc 6 1 for I t -  r'l ~< 6; yet 
it is common knowledge that the adiabatic type of contribution is in 
general proportional to the number of fermion states involved, namely, 
oc6 -1. However, there are no obvious reasons that the two time regimes 
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will not interfere with each other so that they can be treated separately, as 
often used previously.(7'9'1~ 

Based on the above observations, we offer the following procedure to 
solve Eq. (25) unambiguously to O(fi~ To take into account the short- 
time and long-time regimes consistently, we shall introduce a two-step 
treatment. In the first step, a delicate long-time truncation of Eq. (25) is 
considered, 

G~ z')= 
- CpoP  sinhOr/fl)(z - z ' ) '  z, z' ~ same branches 

(27a) 

z, z' r same branches C~ ~'), 

GL(Z, Z') G~ z') + ~ dr" G~ z") F(z(z" ) )  ~ " = GL(Z , "C') 
J 

(27b) 

where P indicates that only the principale part is considered (similar forms 
of this equation have appeared a number of times in the 
literature(7'9'l~ It turns out that Eq. (27b) can be solved exactly if the 
choice p ( s ) = p o  e ~H is employed; the solution is given in Appendix B. 
Then we go to the remaining part of G(z, r') 

D(z,  z ')  = G(z, "c') - GL(z, r ' )  (28a) 

which satisfies 

D(r,  z ')  = D~ z')  + ~ dr" G~ z") F(z (z" ) )  D(z",  z ')  (28b) 

where 

D~ r') = r dr" [G~ C') - G~ r")]  F ( z ( r ' ) )  GL(C', ~') (28c) 

Equations (28) can be solved up to O(c5 ~ by using the method of Fourier 
transform. In this way, we thus obtain the solution in the whole time 
regime to the original integral equation (25). The entire process 8 of solving 
eq. (25) is presented in Appendix B, including the evaluation of the equal- 
time limit G(r, r +) and related quantities. 

8 We think that a transparent and yet rigorous demonstration of the validity of the long-time 
plus simple adiabatic approximation used in previous work (7'9A~ is very important, because 
some questions regarding mathematical rigor have arisen concerning the process of 
evaluating G(r, r+)  via this kind of treatment, as the reader can discover. Since such a 
justification cannot be found in the literature, we give all the details of the solution 
procedure. 
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After a long approach, we finally arrive at the goal. In Appendix B, 
G(r, r +) is mainly separated into two parts. The adiabatic part, given by 
Eq. (B23), contributes an adiabatic potential to the bare system con- 
sidered. This potential is, if we take most conveniently p(e)= 
po o~/(~ 2 + ~ ) ,  

Va(z) = ocCpo (2  F ( z ) -  F(z) arctan[~poCF(z) ] 

In{ l+  [~poCF(z)]2}) (29) 
+ 27Cpo C / 

The other part, Eqs. (B19) [-which is cutoff independent and determined by 
the long-time behavior of ~;~ r ')] gives the influence functional defined 
via Eq. (18) in the following form: 

F[ql,q2]:exP(~ffdtt{~77[Zl(t')]Z2(t')-Z1(t') 

x [Z l ( t l ) -Z2( t , ) ]  d P c o t h ~ ( t ~ - t l )  

x [Zl ( t2) -Z2( t2)]})  (30a) 

with 

Z,(t) - arctan[~poCF(q,(t))], i = 1, 2 (30b) 

where we have separated and reorganized the integrals in Eq. (B19a). 
Equations (30) should be compared to Eq. (18b'). 

In the conclusion concerning this single-channel problem, what we 
have done is to confirm that, based on a rigorous mathematical analysis, 
apart from the adiabatic potential renormalization of the cutoff dependence 
(which is of little interest in its detailed structure in the context of 
macroscopic quantum theory), the mapping from the fermionic heat bath to 
the bosonic one via arctan [~poCF(z)]-~ ~poCF(z) holds in general. This 
recovers the results of Chang and Chakravarty (9) and Hedegfird and 
Caldeira (l~ on their direct considerations of discrete-state systems. 
However, compared to their results, ours involve much more information 
concerning the nonlinearities due to the coupling to the environment. This 
point will be realized in the next two sections. 
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5. QUANTUM LANGEVIN EQUATION AND CLASSICAL- 
QUANTUM CORRESPONDENCE 

Recall Eq. (24') of the general multichannel problem; the general den- 
sity matrix p(x, y, t), from Eqs. (5), (18), (29), and (30), can be written in 
a neat form 

p(x, y, t) = ~ dx' dy' fi(x', y', O) 
d 

with 

x f ~ql ~q2 exp(i{S[q~] - S[qzJ }) 

•  ~ fo'dt' { ! d z ~ ( t ' ) ] Z ~ ( t ' )  

- z~(t') I d  Z;(,')]t 

f' 1 ~- '0  1 ~2 dt, dt2 [Z~(tx)- Z~(tl) ] 

• [dt~ \p/  (31) 

Z~(t)-=-arctan[=poC~F(qi(t))], i =  1, 2; ~ = 1,..., n (32) 

where F(q) is the interaction function to be determined in practical 
applications, as mentioned above, and all the potential renormalization 
terms should be absorbed into the actions S[q~] and S[q2]. The 
expression (31), applicable to both classical and quantum regimes, con- 
taining a considerable amount of nonlinearity, has a large range of 
applications. Details are to be explored. 

In order to fix the function F(q) and the coefficients C~, we consider 
an important and practically interesting regime--the so-called 
quasiclassical regime. In this case, a very similar argument can be used to 
that of Schmid (4) for the quasiclassical Langevin equation in a bosonic heat 
bath. 9 An outline of the procedure is as follows: We first change the double 
integral term in Eq. (31) into a Gaussian stochastic term contributing to an 
effective action Self[q]. Then we transform ql, q2 into 

Q = (ql + q2)/2, r = ql - q2 

9 Detailed requirements for this kind of approximation can be found in Ref. 4. There is a 
similar equation in Ref. 5, dealing with an electron bath in a Josephson tunnel system. 

822/47/1 2 3 
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After this we argue that the stationary phase gives the most important con- 
tributions to the density matrix. Upon doing this, a quasiclassical equation 
of motion is found by requiring (6/&)Self[Q, r] =0.  To actually pursue 
these steps, we have 

{ 1 ~dtl [Z~(t~)-Z~(t~)] exp - ~ ~= 1 

x P cothfi  ( t 2 -  t~) [Z~(t2)-Z~(t2)] 

where f(t) is a random Gaussian stochastic force satisfying 

g , ( f ( t ) f ( t ' ) ) = ~ [ d P ( ~ ) c o t h ~ ( t  - t ) l  (34) 

In this way, we can define a total effective action as 

(r) 
+ f(t) 2~ Q + 2 

with the definition of the function Z~(Q), 

Z~(Q) - arctan[rcpoC~F(Q)] (36) 

This serves to give the Langevin equation for the system by 

c~r(t~) Serf[Q' r] r=o 

=-mQ- V'(Q)+ ~ [f(t) Z'~(Q) -~'2(---Q) Q(t)]=O (37) 
~ = 1  7/7 

the significance of which is discussed below. 
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Next, we make a very simple application of the obtained quantum 
Langevin equation (37). Suppose that one is not interested in the dynamics 
of the particle itself, but instead in the energy absorption capacity of the 
fermionic environment. An easy way to look for the answer is to let the 
particle be so heavy that its motion is not affected by the presence of the 
environment. Thus, the energy absorbed by the environment from the par- 
ticle is simply 

1 ~r t 1 " t2~(') - 
= Jo dt Z~ = -~ ~ 1  Jz~(o) Z~ dZ~ E(O, t)=~ [ -~ (38) 

The function Z~(Q) here is in fact quite arbitrary. To be specific, let us first 
take 2~(Q) to be arctan(rcpoC~Q) and consider a particle moving with a 
velocity v 0 arriving at Q = 0 at time t =  0. What Eq. (38) says is 

1 ~ [~poC=vol E(--~, +oo)=~ =~ (39) 

An interesting phenomenon is thus found: the energy dissipated into the 
environment is saturated. In fact, the energy is mainly dissipated in the 
region I~zpoC~Q I ~< 1. However, one might say that this is quite artificial; so 
we look at a more realistic situation. Suppose that F(Q) is a periodic 
function of Q; then, because of the presence of the arctan function inside 
the Z~(Q), Eq. (38) has the following significance: As the amplitude of 
F(Q) increases, the energy dissipated per cycle will tend to saturate at a 
finite value, which is nearly the quantity 2 x �89 ~2 n ~=1 [7"['P0 C~/~[ F= 0. 

The quantum Langevin equation (38) gives, among other things, a 
general way to determine the interaction function F(Q ) and the coupling coef 
ficients C~from the corresponding classical equation of  motion in analogy to 
what has been done .for the boson bath coupling. (3) Thus, the whole 
procedure of modeling the fermionic environment is self-consistent and is 
independent of the previous work on the boson bath coupling. 
Nevertheless, there are close relations between the two cases. As we have 
seen, the mapping from the single-channel fermion bath to the Ohmic 
boson bath can be simply achieved: If a particle interacts with a fermion 
bath via an interaction function ~poCF(z), then the effects of the environ- 
ment are identical to those of a boson bath with a corresponding interac- 
tion function arctan [~poCF(z)]. In this situation, one cannot distinguish 
the two baths if the information concerning the quantum mechanical 
description comes only from the classical equation of motion. Thus it is 
perfectly alright to employ the commonly used boson bath with a separable 



36 Chen 

coupling Hamiltonian in the context of macroscopic quantum theory. (2) 
But, one ought to keep in mind that the boson bath transformed from the 
fermion bath has a saturation property in the effective interaction between 
the system and the environment, while an ordinary boson bath does not. 
As a result, the energy absorption by the fermionic environment can be 
limited. With regard to the multichannel case, the situation is somewhat 
complicated. The correspondence between a multichannet fermionic 
environment and an environment consisting of many boson baths can be 
made to complete the mapping, although this is somewhat artificial. 

6. C O M M E N T S  ON GENERALIZATIONS,  APPLICATIONS,  A N D  
C O N N E C T I O N S  TO OTHER W O R K S  

6.1. Generalizations and Applications 

The multichannel model that we have considered contains a con- 
siderable amount  of information about the environment. Nevertheless, in 
real life the environment might not fall into the simple model. But in cer- 
tain circumstances, our model does give some hints to actual problems. For  
example, if the environment can be shown to be basically a multichannel 
one plus minor corrections on the matrix elements connecting different 
channels, then we expect that a simple perturbation treatment on the mul- 
tichannel basis can be acceptable. The generalization to the case of more 
than one species of Fermi gas such that each different species has its own 
interaction function F(q) is obvious. In all of these situations, the detailed 
structure of the environments should be known to a certain extent. 
Furthermore, as a complement to the quantum Langevin equation 
approach, a force equation with a time-dependent external force can be 
obtained via our complex-time path integral representation, in analogy to 
that in Ref. 25. 

To get nontrivial generalizations, let us return to the general cases 
where C~i(z ) cannot be simply separated into Co F(z ). However, there exists 
a very important  class where the scattering matrix elements Cu(z ) do not 
involve explicitly energy dependences over a certain range of interest, 
namely, they are independent of {ei, ei}. Then at least part  of the problem 
can be nearly reduced to the simple multichannel type discussed above. For  
definiteness, let us consider a specific example, such as coupling to an 

10 This orthogonal expansion is not unique; other expansions can always be made, according 
to convenience. For instance, in some cases where the explicit direction of the coordinate z 
might be involved, different choices may be made, depending on the specific features of 
C ,j( z ). 
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isotropic Fermi liquid environment. In this example, we can simply 
expand ~~ (spin complications are not discussed here, for simplicity) 

Co(z ) ---, C,, , ,(z) = ~ Ct(z) Pt([~'P') (40a) 
l = 0  

+ o o  

Go.(~, ~') ---, Gp,p,(T, ~') = ~, Gt(r, ~'; ep, ep,) Pt(O'P') (40b) 
/ = 0  

in terms of Legendre polynomials, where all the notations are conventional. 
Now, recalling Eqs. (23) and (24), we can easily derive the following 
integral equation: 

~ c~(~(~)) ~(~, , )  
/=o 2/+ 1 

t = 0  

C,(z(T)) ~") ~ " 1 + (2/+ 1 )-------5 ~ dr"(~~ r, Ci(z(~")) Gt(r , ~') (41) 

with the definitions 

~(~, ~') = f += dep dep, p(e,) p(e~,) ~(~, ~'; e~, e,,) 
- o o  

(42a) 

G~ ~ ' ) = ~  G~,v(r, r') (42b) 
P 

Equation (41) is already in the form of the multichannel problem (24') 
with only trivial modifications. The changes in the final expression for the 
density matrix are the following simple replacements in Eqs. (31) and (32): 

C:(z) 
C~F(z) - - - , - -  

(2/+ 1 ) 

and an overall factor (2/+ 1) for the /th branch; equivalently, apart from 
the adiabatic potential renormalizations, 

arctan[rcpoC~F(z)] --* (2l+ I) 1/2 arctan L (2/+ 1) J 

In fact, this sort of generalization covers a variety of practical interests. In 
addition, in the second order expansion (17), arbitrary C~(z) can be used. 
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This result has very important implications in the process of two-state 
dynamics (6'9), where the effective coupling strength plays an essential role. 
For the spin-boson problem, it is generally believed that if the dimen- 
sionless coupling constant ~ > 1 (cf. Ref. 6) the dynamics will result in a 
spontaneous symmetry breaking, leading to the localization of the system 
inside one of the two states. For a spin-fermion problem, previous 
calculations (9'1~ showed that, when converted into the spin-boson 
problem, the system has an equivalent coupling constant never greater than 
one. Researchers have thus concluded that a spin-fermion system will 
probably not encounter symmetry breaking. However, our simple 
generalized result changes this conclusion. As the coupling between the 
system and the fermionic environment becomes complicated and involves 
many branches of the fermion bath [see Eq. (40)], the upper limit of the 
equivalent coupling constant is no longer restricted to t, especially for 
branches with large l (cf. also the comment at the end of the last section). 

Although our real-time approach is physically transparent and con- 
tains most of the essential information about the dynamics of the quantum 
system, it is not quite known how to use this path integral formalism to 
evaluate the MQT rate out of a metastable potential. To solve this dif- 
ficulty, calculations of the imaginary part of the ground-state energy or free 
energy were performed to find the tunneling rate, (2'22 24) in which a so- 
called instanton technique borrowed from quantum field theory was com- 
monly used. In the procedure, the effective Euclidean action for the system 
alone played an essential role. For the sake of self-completeness, we also 
present the corresponding Euclidean action for the fermionic environment, 
which was worked out previously by Hamann (7) in a slightly different ver- 
sion. A brief derivation of the action is carried out in Appendix C. It turns 
out that [recall Eqs. (27) and (28a)] 

~P dr [ 1 mi2 V~(z)] Seff[z('r)] = Jo 12 + V(z) + 

+~----~f;d'cdr' Lsin rr/~(z_ z,) j (43) 

This serves as confirmation of the above real-time results. 

6.2. C o n n e c t i o n s  to  O t h e r  W o r k s  

Those working on macroscopic quantum theory are particularly 
interested in the Josephson tunnel system--in fact, this is the most suitable 
physical system for experimental test of the theory. A microscopic confir- 
mation with regard to the validity of taking the phase variable as a c o o r -  
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dinate-like variable was given by Ambegaokar et al. (5) In their work, one 
can find an interesting result: the dissipation of the Josephson tunnel 
junction is due to couplings to two independent environments via cos �89 
and sin �89 respectively. Furthermore, one finds that their calculation is 
essentially a second-order result in a functional integral approach, with 
respect to the tunneling matrix of the electrons between the two supercon- 
ductors. These, however, falls into our formalism for coupling to two 
independent species of Fermi gases with interaction function F(q) chosen to 
be cos �89 and sin �89 respectively. Thus significant connections between 
these two approaches should be sought. 

Some workers have already looked into possible Bloch-wave-like 
phenomena in a Josephson junction (~8) in the limit of a vanishingly small 
shunt capacitance, and thus possibly large relative coupling to the environ- 
ment (the typical dynamic frequency of the order of the Josepson frequency 
o)j can be larger than the gap frequency 2A/h, leading to an increase of the 
quasiparticle scattering). Then, through our formalism, significant higher 
order corrections of a purely fermionic nature could be quite crucial. 
Details will be considered later. 

When one actually considers the Bownian motion of a particle moving 
in a Fermi liquid, for example, a heavy ion in a 3He liquid, it is more 
plausible that the coupling to the Fermi gas would be via the momentum 
of the particle rather than the coordinate of the particle after the adiabatic 
potential part is drawn o u t  (4'191. Thus, one may ask whether it is possible to 
transform the momentum-like coupling into a coordinate-like one. This is 
easily done for a boson bath provided the coupling is linear.(2~ However, it 
is still a challenge in the fermionic case. We intend to look into details of 
this question. 

A simple property of Eq. (37) is that the energy absorption of the 
environment tends to be saturated as the coupling strength C increases, or, 
equivalently, the amplitude of the disturbing force increases, as is shown in 
Eqs. (38) and (39). Nevertheless, as the number of channels increases, the 
saturation disappears. We suspect that such a quantum saturation 
phenomenon may be actually observed in a mixture of 3He and 4He liquids 
with a low concentration of 3He when it is disturbed with an extremely thin 
lead. Detailed conditions and analyses remain to be explored. 

We mention that there exist another approach to the bosonization of a 
fermionic bath, which is to work directly on the possible operator transfor- 
mations between the two baths (see Ref. 21 and references therein). Here 
we emphasize that to show the equivalence between the two baths, one 
must also show that the ground states of the two systems can also be trans- 
formed into each other under the same operator transformations! In fact, 
this is not an easy approach either. 
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Finally, we discuss briefly the possibility of using the "right variable" 
perturbation to deal with this fermion bath problem. For the spin-boson 
problem (6) there exists an alternative approach (26) where one starts from a 
"displaced" Hamiltonian (namely, the harmonic oscillators of the boson 
bath are displaced to new stable positions under a suitable unitary trans- 
formation), then performs perturbation iterations on the real-time 
equations of motion. The results are largely in agreement with those of the 
Feynman--Vernon technique. ~6) Therefore, one may wonder whether a 
similar method can be applied here. However, we find that in spite of the 
difficulties there are, in fact, several reasons to actually pursue this ideal; 
they are clustered into the following three major points: 

(1) The conclusion that for the spin-boson problem the path integral 
results can be recovered by those of the right second-order pertubation has 
limitations. Prior to the path integral treatment (61 by Leggett et  al., a num- 
ber of fine results for specific regions of the parameter space could be found 
in the literature. One of the sucesses of the Feynman-Vernon technique 
was the elimination of the boundaries between the various regions. In 
addition, besides the nice analytic results under the celebrated "nonin- 
teration-blip approximation," the treatment gave several series expansions 
which are well-controlled for numerical evaluations. On the other hand, the 
results of the second-order perturbation in Ref. 26 only agree with the non- 
interaction-blip results (note that there are differences in the parameter 
ranges of validity), but leave the remaining iteration scheme quite uncon- 
trolled. After all, these are different schemes in solving the spin-boson 
problem, and all involve certain approximations. Thus they are, in some 
sense, irrelevant to the goal of "exactly theoretical formalism" in this work 
(cf. below). 

(2) For the spin-boson problem it is trivial to find the displaced 
Hamiltonian. However, the corresponding procedure for the spin-fermion 
system is a completely different story. The coupling now involves two anti- 
commutation fermion operators. One possible scheme is to first transform 
the fermion field into a boson field. But, as was mentioned above, one must 
also transform the old ground state into the new one (for this reason the 
result in Ref. 21, we suspect, is unreliable). Of course, for the second order 
of the coupling it is entirely trivial to make the above transformation. 
Beyond this approximation, to the best of our knowledge, no simple 
scheme has yet been found (especially for a extended-coordinate system). 

(3) Finally, since the equivalence between spin-boson and spin-fer- 
mion problems was found (at least partly) by Chang and Chakravarty in 
Ref. 9, the goal of this work is to propose a unified path integral formalism 
for the study of fermionic bath problems, with particular emphasis on the 
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general extended quantum system. Quite naturally the result of Chang and 
Chakravarty is only a specific case in this formalism. What is more impor- 
tant is that the new formalism shows the complete nonlinearities of the fer- 
mion bath problem, which were little-studied previously. 

Nevertheless, it is still an interesting problem whether a much simpler 
description could arrive at the same goal (we strongly suspect that it 
indeed exists). To date, it is unclear. 

A P P E N D I X  A. D E R I V A T I O N  OF THE PATH INTEGRAL 
REPRESENTATION (7) 

In this appendix, we express Eq. (6) in the text via a path integral 
representation. First, let us separate the Hamiltonian (1) into 

t?I(r)=l-~Ip(T)-I-FI~ {iS/*,/5i } ) +/4int( {/~, /~i } ) (Ala) 

Ho(r) = I2Ip(z) + I2I~ (Alb) 

where each part has its own physical meaning: 

Hv(T) -- ~--~m + V(2)+ q(r) 2 (A2a) 

s s 
FI~ ~ [?~,[~,+ Z [2](r)/~,+b~*2,(r)] (A2b) 

i = l  i ~ l  
Q 

/~e - -P  ('~' {/~t '  /~i}) ~-- E C i j ( ) c ) [ ) ~ b j  ( J 2 c )  
/ i , j -  I 

In Eqs. (A2), we have deliberately introduced some external source terms, 
in which t/(r) is an ordinary r-dependent function and {2~(r), 2i(r)} is a set 
of functions obeying the Grassmann algebra. 11 With this introduction of 
the sources, we are able to draw out all the interactions easily by 

J(x, y, t; x', y', O) 

==-Tre[T~(exp{--i;o i~ [/~r~163 dr} 

x (y'l exp [ - "  [~ 

x (x[ exp --i I2I(r)dr Ix')  
+ ie / J  I q('c),.;+if(z),)+,.(z),a ~ 0 

u This introduction is, in fact, a common method used in functional approach to quantum 
field theory, see ref. 11, 17. 
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xTre(T,{expl-ifo-'iI2I~ ] 

x (Y'I exp - i  /4o(~)dr ]y)  

x ( x l e x p [ - i f  t2io(r)d~ Ix')  
0 + ie f l (~:) ,2f(r) ,2i(r) ,z  ~ 0 

/ & 

x (xL exp -i  I:Ip(r)dr ix ' )  (A3) 
+ ie r / (~} ,27(r ) ,2 i (z) ,~  ~ 0 

where the contour 7 is described in Fig. 1, and T 7 stands as the time order 
operator with respect to the contour. Equation (A3) is a common techni- 
que used in field theory to separate two interacting systems. 

Now we look into some of well known path integral formulas. A fun- 
damental formula (16~ in path integral approach to quantum mechanics is 

<xl exp {- i  f{ [~m+ V(2) + ~(z) 21dv } Ix') 

_ ~z(,)=x ~z(z)exp i dz m\d~] V(z)-rl(z)z('c) 
~ z ( O ) -  x '  

(A4) 

This enables us to cast the system part in Eq. (A3) into path integral form. 
As regards the environmental part, we have 



Quantum Dynamics in a Fermionic Environment 43 

Tr~ (T~ exp I - i  ~ / t~  & ] )  

( { ~ l}) Tr~ T~ exp - i ( dr ~ [/~;e;/~ i + 2~(r)/~ +/~;2~(r) 
J)' i ~  1 

---T% [exp(--flH~ L e x p  - i  dr ~ [/ ; ;(r)2~(r)+2~(r)/~(r)]  
Y i = 1  

(A5) 
where the time-dependent operators/;~(r) and b~(r) are defined as 

b~(r) - exp(i/2/~ r)/~i. ~ exp( - i/J~ r e 7 (A6a) 

/;i(r) = exp( i/-)~ r)/;i exp(--iI21~ r E 7 (A6b) 
with 

g2 

i , j =  1 

After applying Wick's theorem (H,~7) to Eq. (A5), we get 

Tr~(T::exp[-if~.l~'(r)&]) 

I( o)l o 
- T r  e exp - f i  exp - i  dz& '  

i , j =  1 

where G~ ~') refers to the one-particle 
definition 

(A6c) 

Tr{ [ exp ( - f l~~  T~[/~,tr) b](r ')] } 
Tr [exp( -- B/;r~ ] 

= -ic5,~{exp[ -ie~(r - ~')] } [0,~(~, r') - f(ei)]  (A8) 

and 07(r, r') in Eq. (A8) is the step function defined along the contour 7- 
However, if we look at the following path integral in Grassmann 
algebra, (11) 

bi(O + i~)= --bi(--ifl) i = 1  

} x exp i dr ~ [b~(iS~- e,) b,(r)-).~(r) b,(r)- b~(r) 2,(r)] 

v 
l ~ )o~(r) Mii(z, r ) 2i(r)] - c o n s t  x exp ~ -  ' f  dr dr' e (A9) 

L ~ i , j ~  1 A 

) 

(A7) 
Green's function (9) with the 
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where Mu(r, r') satisfies 

(iO~ - si) Mij(r, r') = (~ij 6o/(r, r') (Al0a) 

with the boundary conditions 

mo.(O + is, r ' )=  - m u ( -  ifl, r') (AlOb) 

Mofr,  0 + is) = -M•(r ,  - i f l )  (A 10c) 

Equations (A10) are enough to determine Mo.(r, r'). It turns out to be 
G~ r') given in Eq. (AS), so that the left sides of Eqs. (A7) and (A9) 
coincide (identities containing path integrals are made up to an irrelevant 
normalization factor). Thus, we are now ready to express the function 
J(x, y, t; x', y', 0) in terms of the path integral. Combining Eq. (A3) with 
Eqs. (A4), (A7), and (A9) and restoring all the interactions, we finally 
arrive at 

J(x, y, t; x', y', O) 

= f ~ z ( r )  f i  ~b* i ( r )~b i ( z )exp  i dr m \ d r ]  
i = 1  

-V(z)-  C (z)b;bj+ 
i , j = l  i = 1  

(Al l )  

This is nothing but Eq. (7) in Section 2. The boundary conditions 
associated with it are also stated there. 

APPENDIX B. SOLVING THE SINGULAR INTEGRAL 
EQUATION (25) 

B.1. Solution of  Equation (27) 

As mentioned in the text, we shall solve this integral equation in two 
steps. In the first step, we concentrate on Eq. (27) to capture all the essen- 
tial long-time properties. Here, for definiteness, we choose the density of 
states of the environment to be p(s) = poe ~l,l throughout the two steps. At 
the end of this appendix we return to the general situation of arbitrary 
choices on the high-energy cutoff. For later convenience in keeping track of 

i (9) G~ r') easily, let us make a simple contour deformat on : Shift the 
upper (lower) branch of the contour 7 (i.e., of the integral loop ~) to 
[0 + i6/2, t + i~/2] ( I t -  i3/2, 0 - i3/2]) and denote this new contour by L; 
see Fig. 2. As a consequence, we have ~ ~ ~L" This deformation is perfectly 
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i o-~-~ 

i t+~8 

t 
I 

i t -~8  

complex-time plane 

Fig. 2. The contour L. It consists of two straight lines with definite directions. The two lines 
are separated by ~, which is a small, but finite quantity. 

legitimate, since originally all the functions concerned in Eqs. (25) (28) 
were only defined on the contour ?, so that this produces only slight 
changes in the notation of the argument-function correspondences. 
Namely, we now define the same functions using the corresponding time 
arguments on L. This greatly simplifies the expression for Eq. (26b); it is 
simply 

f sinh(~/fl)(r'~/fl - ~ ) =  tp~ r') (B1) 
O(r, : ) - P .  &" B(<)  ~(~", ~') 

Tel L 

where we have scaled the quantities 

_ _  G~ z') B(r) --+ i~PoCF(z(z))  ~L(r, ~') ~o(~, ~,) -,  Cpo ' ~,(r,z ')- ,  Cpo ' 

and the integral contour is defined in Fig. 2 (note that we do not actually 
enclose the contour). 

We shall solve this singular integral equation by the method 
introduced in Muskhelishvili's book. (15) Equation (B1) is not yet in the 
form of the Hilbert problems discussed in Ref. 15. However, if we use the 
identities 12 

+~ (_l)n 
~/fl =- ~ (B2a) 

sinh(zc/ f l ) (r-  z) _ r -  z + infl 

+ o o  

~ 1 (B2b) f i c o t h ? ( r - z ) -  2 r - z + i n f l  

J2 We also use the symbol z to denote an arbitrary complex time variable in the process of 
solving Eq. (B1). This should not be confused with the coordinate variable used in our path 
integrals. 
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and the antiperiodici ty of ~(~, ~'), 

~9(r + int~, r ' ) =  ( - -  1)" ~(z, r ' )  

~(r, z '+ int~)= ( - -  1)" ~9(~, "c') 

C h e n  

(B2c) 

(BZd) 

we can cast Eq. (B1) into the s tandard  form of Hi lber t  p roblems with a 
new contour  L ' - L  + in~, n = - o o  to + oo, as shown in Fig. 3, 

~(~, ~ , ) -  P. [ ~ ,  . d~,, 8(~") ~(~"' ~')-- ~o(~, ~ , ) ~ , ,  _ ~ (B3) 

where B(r"  + in~) is assumed to be B(r").  The solution to Eq. (B3) is well 
constructed in Ref. 15. We briefly repeat  the procedure  here. 

Define a sectional ho lomorph ic  function as in Ref. 15, 

1 f dr" B(r")  ~(z",  r ' )  (B4) 
qS(z) = 27zi L '  "C t '  - -  Z 

in/3 

-in/3 

. . . .  i 8  

f 

iB 

f 

i 8  

t 

" t + i n B  
o 

t 
e 

complex-time plane 

t-inB 
, o  

Fig. 3. The contour L'. It is formed by a set of duplications of the contour L along the 
imaginary axis with a separation i/L 
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When z approaches any point of the branch cuts L' [approach to the left- 
(right-) hand side is marked with the superscript " +  ( - ) " ] ,  we have 

q ~ + ( ~ ) - ~  ( ~ ) = e ( r )  O(r, ~') 

e+(~)+e  (~)=0(~, ~,)_6o(~, ~,) 

(B5a) 

(B5b) 

In trying to solve Eqs. (B4) and (B5), we introduce another sectional 
holomorphic function 

1 dr" 1 + B(r")~ 
X(z) - exp - 2~---i fc, ~ In 1 - - ~ ]  

- exp dr" z 7r (r" - z) In coth # 1 + B(r")J (B6) 

which satisfies 

- "c~L '  (B7a) 
x (~) ~+~(~)' 

X(z + inl3) = Y(z) (STb) 

Combinings Eqs. (B5)-(B7), we see that 

•+(r) 8(r) 
~+(~) x + ( ~ ) -  ~ (~) x (~) = 1 - -~~5  r r') (B8) 

This gives an obvious method for constructing ~(z) [Eq. (108.9) of 
Ref. 15], 

[X(z)]-lfL dr"X+({')B({ ') ~o(.c,,,r, } 
6O(z ) -  2~ci . , (~'-~'- z - ~ T B ( z " ) ]  

[ y ( z ) ]  - '  
2~i fLdr 

" Y + ( < )  B ( < )  ~,/~ 

1 - B(r ' )  sinh(~//~)(r" - z) 
~k~ '', r ') (B9) 

The function ~0(z) clearly satisfies &(z + infi)= ( - 1 ) "  ~(z); thus, a formal 
solution of ~,(r, r ') is found, 

1 1 q,(~, ~ , )=  _ _  ~o(~, ~,) + 
I -- B2(r,) uiX+ (r)[-1 + B(z)] 

xf~ dr " x + ( ' c ' ) B ( r ' )  ~/fl r176 (B10) 
.. 1 - B(v") P sinh(~/fl)(r"- r) 
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To be complete, an important property of the function X(z) should be 
given here, according to the nature of the principal integral, 

X + ( r ) + X  ( r ) - 2  = - -  
~l ' 

x + ( r  ;) - x -  ( r ' )  
dr' 

r r - - r  

p f  7t 7/ , 
=--=7u JL & ' [ X + ( r ' ) -  X (r ')]  ~ c o t h ~  ( r - r )  (B11a) 

X+(r)  t-X (r----) 2 : :  dr' rot X+-(r ) X--(r ) ~ c o t h ~ ( r  r) (Bl lb)  

B.2. Solution of Equations (28) 

Having obtained the solution to Eqs. (27), we now turn to Eqs. (28) 
for the short-time regime. From Eqs. (26') (27a), and (B10), we notice the 
following simple properties l3: 

~O(6), [ r - r ' l  >>6 (B12a) 
D~ z ' )=  (0(6_1)  ' Lr-r ' l  <~6 

• D~ r') dr = ~ (r - z') D~ r') dr = 0(6) (B12b) 

These can be visualized more easily by looking at the plots of G~ r') in 
Ref. 9. What is more important is that D(r, r ') also has the same features 
when we iterate Eq. (28b). Therefore, we are mainly dealing with a 
problem such that if O(c5) is neglected, we can omit all the boundary com- 
plications and utilize the technique of Fourier transform. 

An easy order-of-magnitude analysis based on Eqs. (B12) shows that 
the first-order and only the first-order variations of all those slowly varying 
functions near r' (on both branches) should also be considered carefully. 
Furthermore, we notice that there are actually two functions to be solved 
for a given r', according to whether r and r' are on the same branch. For 
algebraic convenience, we shall assume r' is on the upper branch, separate 
D(r, r ') and all the related functions into two branches, and extend the 
limits of all the integrals involved to infinity. Now employ the following 
notations with t-= r -  r' and for r ~ (q}) the upper branch: 

D~ r') = D~ (~~ z') = G~ 

D(r, ~') = Dl(z)(t), F(z(z)) = Fl(2)(t) 

13 Note that all the Green's functions have the following simple feature: Within t z - v ' l  ~< 
they are proportional to 6-1; otherwise, they are of 0(6o). Integrals over one end of these 

functions can give at most 0(6~ 
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Then Eq. (28c) can be rewrit ten in the form [cf. Eq. (26)1 

f +~176 D~(t) = D~ + dt' G~ - t') F~(t') D,(t ')  

f 
+ o o  

- dt' [G2O(t- t ' ) ] *  Fz(t '  ) De(F) 
- -  o o  

(B13a) 

f 
+ o c  

Dz( t )=D~ dt' G~  ') 
- - o : 3  

f 
+ a o  

- dt' [ G ~  t ' ) ] *  F2(t') D2(t') (B13b) 

where the asterisk stands for the complex conjugate.  As we have explained, 
only the first-order var ia t ions of  Fl(t), F2(t ) should be taken onto  account;  
any higher order  contr ibut ions  would give at most  O(5). The Four ier  
t ransforms of Eqs. (B13) can be readily writ ten down: 

Dl(co) = D~ + G~ F1Dt(co)-  i]71D'I (~o)] 

-- [62~ [F2D2(CO) - iP2D;(CO)] (B14a) 

D2(co ) = Do(o)) + G~ - iPlD'l(co) ] 

- E G ~  * [F2D2(co)-iP2D2(co)] (B14b) 

Since the relevant frequency scale for this short- t ime problem is co ~ 5 1, 
D](co) and D~(co)~ 0 (5 )  are higher order  terms compared  to Dl(co ) and 
D2(co) of O(5~ Keeping the order  of magni tude  in mind, we can easily get 
the answer for Eqs. (B13). Before performing the calculation, let us notice 
another  very impor t an t  feature: F r o m  Eq. (26) we see, for /~ ~ ~ ,  

G~ = -iCp(co )[1 - f ( c o ) ]  --, -iCpoO (+co) e -~dr176 
(B15) 

[GO( _ co)]* GO(co) = C2p~e-26l~)lf(_ co)f(co) ~ 0 

This enables us to decouple D~(co) f rom D2(m) because D~ from 
Eqs. (28c) and (B10), is p ropor t iona l  to G~ Thus,  Eq. (B14a) simply 
gives 14 

D~ G~ d D~ 
DI( (D)=  I _ F ~ G 0 ( c o )  if'~ l_F~GO(co)dc  ~ 1-FAG~ /-O(6 2) (B16) 

This serves as one of the bases to evaluate  the equal- t ime limit ~(~, z +). 

J4Concerning the decoupling, care should be taken with regard to terms containing 
G~ -~ 6(o)). But this 5(co) does not have any effect, since o . o Dl(u))lo~=o= O2(co)l~o=o=O, so 
that the functions multiplied by G~ always vanish at co = 0. This could be understood 
from the point of view of the short-time limit. 

822/47/I-2-4 
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B.3, Evaluation of Equal-Time Limit Quantities 

At this stage, the main approach toward the solution of Eq. (25) has 
been finished. Our next goal is to evaluate tr log G from the solutions 
(B16) and (B10). The algebra is quite lengthy but straightforward. First, let 
us separate Gr(z,  r ')  into two parts according to the long-time and short- 
time contributions to (~L(r, r + ). From Eqs. (BI0) and (B7a), recalling the 
identity (this identity is easily visualized because when r = ~' an integral 
over ~" diverges; thus, an extra double c~-function is introduced to cancel 
this effect; see Refs. 7, 14, and 15) 

( r " - r ) ( ~ " - z ' ) = z - r  ' r " - r  z" - r '  +Tr2a(r"z')a(z'z') 

we have 

1 
Q~(r' r') = l - ~={z) [8~ z') + i~B(r)  a(~, r ' ) ]  

1 + 
ircX+(z)[l  + B(r)]  

dr" X + ( r ' )  B(z") P ~/fl t X 
& 1 - B(r")  sinh(~z/fl}(r" - z) 

~ 0  ( - X [G~ Z ' ) -  ~ L , r  , r t ) ]  (B17a) 

COo [ 1 1 ] 
(~0:, z')= 4rciB(r) X~Z(r) X-(r) 

x f dr" 
~ T  [X- ( < ) - -  X+({ ' ) ]  

~//~ 1 
sinh(rc/fl)[(r - { ) /2 ]  cosh(rr/fl)[z" - (r + r ' ) /2]  

( p  7c/fi P ~/fl ) (Bt7b) 
sinh(~z/fi)(z" - r) sinh(~/fl)(r" - z') 

Obviously GT(r, z +) involves only quantities near ~, because the integral 
over z" is cut at long time. The advantage of this separation lies in the fact 
that the contribution to tr log G from the second part can be exactly 
evaluated via Eq. (Blla) ,  and the contribution from the first part will be 
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considered by using the method of Fourier transform together with the rest 
of ('~(r, r Consider the quantity 

,~ dr F(z(r)) GtL(r, r + ) 

1 1 

x--~ d r ' P  coth ~ (r - r ) [X-  (r - X+ (r  

f L d r [ 1  1 ] d  = ~ :cz(r) x-(r)  ~ [x+(r)+Jc (r)] (ms) 

Recalling Eq. (B6) for X+/-t(r)  and Eqs. (12), (13), and (23) for the 
definition of (~, after some algebra, we get the contribution to tr log G 
from (~~ r'): 

f c d c ;  + 
Jo C- JL dr F(z(r)) GL(r, ~ ) 

I f drd[_fz,,s z e ) l  
= ~ ~ d r  o sinZz+-2--J 

2~r2 dr dr' Z(r) Z(r ) ~ P coth ~ ( r  r) (B19a) 

where we have defined 

Z( r ) =- arctan [ Tzpo Cz( r ) ] (B19b) 

To deal with the rest of the parts, we shall need the Fourier transform 
of G~(r, r') near r', which is, from Eq. (B17a) for r, r' e the same branches 
[from now on, we neglect the subscript "l" in Eq. (Bl6), since we no 
longer restrict r' to the upper branch] 

G~(o~) = G~ 

where 

l+FG~ 4- d I 
1 +(7cpoCF) 2 ~ - iG~176 

F=-F(z(r  

d l+FG~ ] 

dr' l -g-(YZpo C-?SU + ~ 
(B20) 

G~ = -ilrpo C sgn 6o 4- O(fl -1) 

Note that during the calculations leading to Eq. (B20), some G~ has 
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been ignored because of the factor [ G ~  G~ From Eqs. (B20) and 
(28c), one can also get 

F +  F2G~ ) 
D~176 = [ G ~ 1 7 6  G~176  G ~ 1 7 6  1 + (~poCF) 2 

d 1- d F +  F2G~ 7)  -2, 
+ G L - i G ~ 1 7 6  +O(0 ) (B21) 

Then, it is not difficult to find, from Eq. (B16), 

G~ 
G~'L(o) + D ( o )  = 1 - FG~ 

~ f  d a0(o) ]2 
- - F--~o)J 

c~ d c ~  

+ 1 - FG~  do 1 - FG~ + 0(62) (B22) 

The f irs t  term is what would have been found  had we simply used the 
adiabatic approximation(7'9); the rest of the terms are the first-order correc- 
tions to the adiabatic result. The equal-time limit is given by 

C~(r, r + ) +  D(r, ~+) 

f +~ do i0+ 1 
= ~ ~27 e [G~  ' -F(z(~)) 

(~poC) ~ PF 
+ - -  (B23) 

7r [1 + OzpoCF)2] 2 

where we have used the fact that G ~  - i n p o C  sgn o. Again, the 
first integral is the adiabatic result, ~ which depends on the form of the 
large-frequency cutoff of the environmental spectrum, and contributes an 
adiabatic potential to the bare action of the particle. The second term 
contributes boundary terms to tr log G, which cancel the boundary terms 
appearing in Eq. (B19a) exactly  (this cancellation is by no means obvious 
at the beginning of the computation). 

B.4. A b o u t  the  Choices for  the  C u t o f f  Procedures 

Next, let us return to the general situation where a different cutoff 
form than e al~l may play a role. A better way to look into the possible 
effect of this change is to redefine Eq. (27a) for r, ~' r same branches, 

~/fi (B24) 
(~~ r') -~ - C p o  sinh(rc/fi)[r -- "c'-- i6 sgn~(r, ~')] 
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where c~ now is a time scale of the order of co, 1 (co,. ~ cutoff frequency). As 
a consequence, ~0(~, r ' ) - G ~  r ' )=AG(z ,  r') ~ 0 for r, z ' r  
branches. This AG is, however, very much similar to G~ in Eq. (B13), 
except that the Fourier transform AG(co) ~ 0 at co ~ 0 smoothly. The main 
property of AG is that AG(co) is only nonvanishing when co > 0 or co < 0, so 
that any relevant integrals associated with it can be easily shown to be zero 
by taking the Fourier transform. For these reasons, one can verify that it 
does not affect the decoupling of D~(co) from D2(co), nor cause D~ and 
G~(co) to vary, and therefore it does not change the final results (B19) and 
(B23). Namely, our result is generally valid. 

Finally, to get a qualitative feeling for the adiabatic potential due to 
Eq. (B23), let us choose another density of states for merely analytic con- 
venience, p(s) = poCS~/(s 2 + o~). Then 

GO(co) _ rrpoCco~ 
co + ico ,~ sgn co 

This gives the nice adiabatic potential (29), where the trick (13) has been 
employed (cf. Refs. 7 and 9 for details) 

APPENDIX C. BRIEF DERIVATION OF THE EFFECTIVE 
EUCLIDEAN ACTION (43) 

By our path integral approach, we shall derive the effective Euclidean 
action for the particle alone in parallel to our work on the real-time 
dynamics. Start with the partition function of the system-plus-environment 
given by 

Z ( f l ) = T r { e  #'~} (Cl) 

In almost exact analogy to the derivation in Appendix A, this partition 
function is straightforwardly cast into the following functional integral: 

Z ( f l ) =  ~z(z) [ I  ~b[(r)  ~b, ( r )exp - dr rn~ 2+ V(z) 
i=1 

o o j )  
@ E bti(i~r@si) biq- E Cij(z) b;bj@Hint({b~,bi}) ( C 2 )  

i=1 i,j=l 

with the boundary conditions 

z(O) = z(#), b,(O) = -b , (# ) ,  b y ( o )  = - b , ( / ~ )  
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For the single-channel problem mentioned in Section 3, when the 
functional integral over the fermion variables is performed, Eq. (C2) 
becomes 

Z(~)=L~o~_~(~)~zexp{-f~3&I~m~2 + V(z)]-trlogg} (C3) 

where g is the matrix notation of the temperature Green's function satisfy- 
ing 

g = gO _ gOCg (C4) 

In Eq. (C4), C = CF(z(z)) 6(r-  z') and gO is given by 

g~ (C5) 

Again, what we are interested in is the tracelike quantity 

f2 

~ -  C ~ g,, (C6a) 
i = l  

with 

~o = COo sin [(~//~) 6 sgn(r - ~') + ~ - r ' ]  (C6b) 

for the choice p(e)=-po e 6l~l. This makes Eq. (C4) into the particular type 
of integral equation encountered above. The detailed algorithm goes 
exactly parallel to those in Sections 2 and 4 and Appendix B except that 
the contour and the form of the functions here are much easier to deal 
with. In fact, the process given by Hamann (7) is more easily understood, 
though slightly unrigorous. Both of these arrive at the expression 15 

Z(/~) = L(o)-z(r @z exp{ -Serf[z(r)] } (C7) 

where the effective action obtained is given by Eq. (40) in the text. 
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